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Abstract. We report coincidence measurements between inelastically scattered 148 keV 
photons and the recoil electrons generated within a 80 nm thin Cu foil. We have analysed 
the Doppler broadening of the scattered photon intensity. which corresponds to a scan 
through the three-dimensionalelectron momentumdensity (EMD) parallelto the momentum 
transfer vector. The experimental data are compared with a theoretical EMD lrom the 
modified augmentedplanewavemethod. A Monte Carlocalculationisdescribed that allows 
for the correction of multiple electron scattering within the foil. Estimates of the triple- 
differential cross section ior Compton scattering are given. The experiment was performed 
with the synchrotron radiation from a bendingmagnetofthe DORlSStOrage ring at Deutsches 
Elektronen-Synchrotron (DEW), Hamburg. Federal Republicof Germany. 

1. Introduction 

In the past, inelastic high-energy photon scattering (i.e. Compton scattering) has been 
used to investigate the so-called Compton profiles of valence electrons from solids. The 
momentum distribution of the initially bound electrons causes a Doppler broadeningof 
the scattered radiation. If the recoil electron is not observed, the double-differential 
crosssection for the scattered photon is proportional to an integration of the momentum 
density over the momentum components, which are perpendicular to the photon 
momentum transfer vector K = k - k' .  Here, k and k'  are the momenta of the primary 
and scattered photon respectively. However, if the electron is detected in coincidence 
with the scattered photon, the scattering kinematics are determined completely and the 
triple-differential cross section becomes proportional to the electron momentum density 
(EMD) itself. In traditional Compton scattering the EMD can only be obtained by meas- 
uring a large number of directional Compton profiles and employing reconstruction 
techniques (Hansen el a1 1987). 

Recently, we have demonstrated that the EMD of AI can be extracted from such a 
( y ,  ey) experiment (Rollason et a[ 1989a, b, Bell ef a[ 1990). The idea of fixing the 
kinematics by a coincidence condition is the same as used in positron annihilaton 
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experiments or in (e, 2e) spectroscopy, which means that the results one gains from all 
three experimental techniques are similar or even identical. In the positron experiment 
the annihilation rate is proportional to the square of the Fourier transform of the product 
of the positron and electron wave functions (Berko 1983). Thus, for information about 
the EMD it may be advantageous to use ( y ,  ey) experiments, since any ambiguity due 
to the positron wave function is avoided. The similarity between (e, Ze) and ( y ,  ey) 
spectroscopy is even greater: in both cases the triple-differential cross section is pro- 
portional to the EMD, theproportionalityfactor being, roughlyspeaking, theRutherford 
cross section in the former case and the Klein-Nishina cross section in ours (Byron and 
Joachain 1989, McCarthy and Weigold 1988, Rollason etal 1989b). The strongelectron- 
nucleon interaction in (e, 2e) produces severe incoherent elastic multiple scatrering 
within solid-state foils. This smearingof the electron direction disturbs, to some extent, 
the evaluation of the EMD. Although thiseffect also existsinour case, it is lessimportant 
than for (e, 2e) spectroscopy since one of the collision partners is a photon, restricting 
the multiple-scattering effect to the recoil electron only. This is probably why there have 
been so few attempts to apply (e, Ze) spectroscopy to solids (Persiantseva et a1 1979, 
Ritter etal 1984, Gao ern/ 1988, Hayes era1 1988,1991). 

Finally, we should mention some early ( y .  ey) experiments dating back to the 
beginning ofquantum mechanics. It should be remembered that the coincidence method 
was invented in 1925 by Bothe and Geiger (1925) while studying the Compton effect. 
Experimentsafter thisincreased both the time andangular resolution(BotheandMaier- 
Leibnitz 1936, Cross and Ramsey 1950) but only the more recent experiments (Rollason 
et a/ 1989a, b, Bell et a1 1990) were able to show the influence of the intrinsic EMD of 
the bound electron. These experiments have become possible with access to the new 
powerful sources of y-rays represented by modern lepton storage rings. In the following 
we describe such an experiment at the storage ring DORIS 11 at Deutsches Elek- 
tronensynchrotron (DESY), Hamburg, which yielded the momentum density of copper. 

2. Kinematics 

In this section we discuss the kinematical situation of ( y .  ey) experiments. If a photon 
with initial energy w and momentum k is inelastically scattered by an electron at rest 
(using natural units, i.e. tn = h = c = 1 a n d 2  = a, the fine structure constant) a photon 
detector, placed at an angle Bo,  will measure a photon with energy wj 

wi, = w/[l + ~ ( l  - COS B o ) ] .  (1) 

Simultaneously, the recoiling electron &,ill be emitted at an angle po with respect to the 
primary photon direction 

cot qo = (1 + w) tan(&$) (2) 

and with an energy 

Ei, = w -  wj+ 1 (3) 

(remember that E;, is the total energy including the rest mass energy). Now, let the 
electron be bound with a binding energy EB > 0 and an EMD p(p) .  From the momentum 
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Figure 1. Momentum diagram of the scattering 
process. 

diagram of figure 1 it follows that the result is two fold: electrons will appear at angles 
a, # a,, and the photons will have energies w' # ob. The following quantitative analysis 
refers to our experimental set-up, where the photon detector was fixed at an angle 0 = 
0,and the electron detector could be placed at arbitrary angles a,. In this case the energy 
broadening Awl = w' - wh is, in essence, given by the initial momentum component 
p z  of the electron parallel to momentum transfer vectorK, and the angular broadening 
Ap = q~ - qo by the components pL perpendicular to K .  Since p = k' - k + p ' ,  it can 
be seen from figure 1 that 

pz = P ' C O S ~ -  K (44  
p L  = p' sin a (4b) 

p' = [ (U  - w' + 1 - EB)2 - 111'2 ( 5 )  

K = ( w z  + CO'? - 2ww' cos Bo)'/2 (6)  

KCOS = w cos 9, - w '  + e"). (7) 

where the final electron momentump' is given by 

and the transfer vector K is given by 

where the angle a betweenK andp'  is given by 

The last equation holds for a coplanar detector arrangement only. Whereas equations 
(4) are exact, we shall derive approximate expressions that show the connection between 
the initial momentum components (pl, pJ and either the Doppler broadening Am' or 
the angular correlation A V ,  For high-energy photons it is well known that the momentum 
transfer vectorK does not vary significantly in either length or direction over the range 
ofscatteredphotonenergiesw'that areofinterest.Therefore, weuse theapproximation 

K = K ,  = ( ~ 2  + W B Z  - 2"; COS (8) 
The maximum value of the angle (Y is roughly given by sin a = &/KO where the Fermi 
momentump, is about 1 au and KO = 60 au for our experimental situation. Thus, a Q 1 
and we obtain (4) 

p 1  = p' - K = (w/K,w;l)  Am' 

pI =p'a = KO Aq. 

( 9 4  

(96) 
In (9a) additional terms of the order E B / K ,  have been neglected. We willdiscuss this in 
section 5. In principle, the ( y .  e r )  experiment can be run in two ways: either both 



SS90 F Be[/ et a/ 

detectors are fixed, i.e. the electron detector is also placed at A V  = constant-in this 
caseoneobtainsap,-scan through the EMD&) for alixedp, by measuringtheDoppler 
broadening Am' in the y-detector-or the angular correlation is measured by scanning 
the electron detector over a range of AT-values. Then ap,-scan for a fixedp,-value is 
made if coincidences at constant 0'-values are detected in the y-detector. We have 
tested both possibilities (RollasonetaI1989b,Bellela11990). Sincenoposition-sensitive 
detector was available we had to move the electron detector and to count coincidences 
at each angle. Therefore, the angular correlation method is more time consuming by far 
(for a fixed statistical error of the coincidence counts) than the Doppler broadening 
technique. For this reason we restricted the present experimental data top,-scans. 

Finally, we emphasize that the analysis above referes to a fixed photon detector at 
0 = 13,. Of course, one could do the same for a fixed electron detector at rp = 'po and 
move the photon detector. We will give the approximate expressions only: the initial 
electron momentump can be decomposed into components parallel and perpendicular 
to the vector K~ = k - pj. The component p 2  parallel to K~ yields a Doppler broadening 
AE' = E' - EI, in the electron detector: 

p = W ' - K  0 - [(I + m)/(l + E ; ) K o ]  AE' (104 

p L  = K" A 6  A e =  e - eo (lob) 

E ;  = (1 + x2)/(1 - X * )  

K O  ( U 2  +pi* - 2Wp; COS V O ) " ~  (11) 

ph =(EA2 - 1)'/2. 

and the component pI perpendicular to K" yields an angular correlation 

where 

x = m cos po/(l + 0) 

and 

with 

In analogy to two-dimensional angular correlation of annihilation radiation-& "D ACAR 
(Berko 1983)-in an ideal ( y ,  ey)-experiment two two-dimensional photon andelectron 
detectors could be placed with their centres at eo and q0. Depending on their energy 
resolution the p,-components of the EMD could be resolved or not. In contrast to the 
case for 2D ACAR, the approximations (9) and (10) for both detectors do not hold equally 
well. Whereas (9) is a very good approximation for K P p ,  equation (10) is valid only if 
rro points in strong backward directions, i.e. if 6 = rz holds. This demonstrates the 
asymmetric behaviour of the y-ray and electron branches. 

3. Experiment 

The experiment was performed using the synchrotron radiation from a bending magnet 
of DORIS 11 at DESY with a critical energy of E, = 27 keV. The beam was monochromated 
with a single Ge crystal in (220) transmission. The energy width of the primary photon 
beam, originating from the beam divergence and the rocking curve width of the Ge 
crystal, wasabout 1 keVat 0 = 148 keV.The y-rayenteredanevacuatedtargetchamber 
of 0.8 m diameter with an externally mounted intrinsic Ge detector at a scattering 
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Figure 2. Time spectrum for a 0.5 pm thin AI foil. 

angle Bo = 140" and a passivated implanted planar silicon diode as an electron detector 
mounted internally at an angle qj = qo = 15.8". It has been showzn that the momentum 
resolution of a Compton scattering spectrometer operating with a solid-state detector 
at a scattering angle of 140" is best for photon energies around 150 keV (Manninen eta1 
1990). The incident beam and both detectors were coplanar. The energy resolution of 
the electron detector (= 10 keV FWHM) was poor compared to that of the Ge diode (= 
0.8 keV). The latter, together with the energy width of the primary beam, yielded an 
energy uncertainty which, in turn, can be transformed via (Sa) to a p,-resolution of the 
experiment with 1Ap,1 = 0.9 au (FWHM). At the same time both the angular acceptance 
of the photon and the electron detector introduced via (9b) a momentum uncertainty 
1 ApPL 1 = 0.6 au. 

The storage ring was operated in the single-bunch mode with a bunch distance rB = 
960 ns and a bunch length of 0.15 ns which is small compared with the time resolution 
z of our coincidence circuit (160 ns FWHM). Under these conditions the accidental 
coincidence count rate n, is determined by uncorrelated events within the same bunch. 
Thus, ri, is independent of 7 and is given by ria = r i , r i z ~ g ,  where r i ,  and riz are the photon- 
and electron- detector count rates. (To be more specific, the ti are the macroscopic count 
rates averaged over a long time; they are not the count rates during a bunch.) Since rB 
is very large and the bunch length is much shorter than the time resolution of modern 
slow-fast coincidence circuits the experiment must inevitably be performed with 
extremely low single-count rates ti, and ri2. We used very thin self-supporting Cu foils 
(80 nm), thus keeping the accidental count rate at an acceptable level. 

Figures 2 and 3 show the time spectra for 0.5 ,um (figure 2) and 50 pm (figure 3) thin 
AI foils which were taken under otherwise identical conditions. If we disregard for a 
moment the effect of electron multiple scattering within the foil, we expect that the ratio 
of true to accidental events decreases proportionally to lld where d is the foil thickness. 
Multiple scattering, which tends to limit the count rate in the electron detector, will 
weaken this dependence but the trend will remain and is clearly seen by comparison of 



5592 F Bell et a1 

a 
fi 

U 

Figure 3. Time spectrum for a 50 pm thin AI foil 

the figures. Whereas the 0.5 p n  foil shows practically no accidental events, satellites 
due to uncorrelated events from neighbouring bunches appear for the 50 pm foil. The 
time spectrum for the 80 nm Cu foil is identical with that of figure 2. 

3.1. Monte Carlo correction 
As mentioned in the introduction, an essential point of the experiment is the multiple 
scattering of the recoil electrons within the target foil. In the following we will describe 
a Monte Carlo (MC) procedure with which we have corrected our experimental data for 
this effect. Since, for our experimental set-up, the average kinetic recoil energy is 
E(,  = 50 keV (wi, = 98 keV), the mean free path A for elastic scattering is about 12 nm 
in Cu. Since the electrons are homogeneously produced throughout the 80 nm foil they 
experience on average about three collisions. Although this is a rather large number of 
collisions the experiment is redeemed by the Fact that the differential electron scattering 
cross section is strongly peaked in the forward direction, which is in marked contrast to 
inelastic photon scattering. In order to retain maximum flexibility, we decided not 
to simulate the whole experiment by a Monte Carlo (MC) calculation but only the 
transmission of those electrons that had started within the foil in a direction parallel to 
the momentum transfer vector KO. If one knows the distribution g(pL) in the transverse 
momenta pI, which are the momenta the electrons have after leaving the foil, the 
measured electron intensity is a convolution of g(p,) with the undisturbed emission 
pattern. Since the latter isproportional tothe three-dimensional E M D ~ ( ~ ) ,  the measured 
electron intensity I becomes 

I ( P L , P J = A ( P o P ( P , , P z )  + (1 - P o ) / P ( P ;  -P,.Pz)g(P;)d’P;) (12) 

where A is a constant (which includes the cross-section, solid angles etc) and Po is the 
fraction of unscattered electrons: 

where d is the foil thickness (see remarks below), and the distribution function g(p,) is 
P, = (a/d)(i - (13) 
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normalized to unity. As a first-order correction we take the ratio R(p,,p,) of the 
undisturbed electron intensity to that of the intensity influenced by multiple scattering 

W P L ~ P ~ )  =A~(P,,P,)/(~(P,,P,)) , ,  (14) 

by which the experimental data should be multiplied in order to obtain corrected data. 
Here, (. . .), means that we have averaged the scattered intensity I over the finite 
opening of the electron detector and convoluted with the energy resolution of the y- 
detector. For our model we have evaluated the correction factor forp, = 0. 

In the following we describe briefly the MC procedure to obtain the distribution 
function g(p , ) .  The method is very similar to that used by Felsteiner eta1 (1974) for the 
multiple-scattering correction of inelastically scattered photons. But, in contrast to MC 
programs for photons, our simulation is very much facilitated by the simple geometry 
of our targets, thus allowing a calculation in cylindrical coordinates. At 50 keV the first 
Born approximation works very well and the Mott-Born cross section is (Motz er a1 
1964, Salvat 1991) 

du/d(s*) = n ( 2 z / ~ ) ~ P  - ( d 2 ~ ~ ) ~ 1 f * ( q ~ ) ~  (15) 

Equation (15) is written in atomic units. The form factorffor a solid differs from that 
for a free atom since, in the former case, an atom is completely screened within the 
Wigner-Seitzradius. Salvat and Parellada (1984b) have given expressions forfthat were 
obtained from Dirac-Slater self-consistent electron densities under the appropriate 
WignerSeitz boundary conditions: 

f(q*) = A/(a:  + P') + (1 - A)/(& + 4') (16) 

with A = 0.213 74, a, = 13.4817 and a2 = 2.429 97 for Cu. 2 is the nuclear charge of 
the target, U is the electron velocity, p = U/C, y* = 1/(1 - p2) and c = 137, the velocity 
of light. Here, q = 2ph sin(cu/2), which is the momentum transfer when electrons with 
momentumpe are scattered by an angle a. 

For the MC procedure we have used the method of forced collisions (Cashwell and 
Everett 1959, Felsteiner et a1 1974). If the distance to the exit surface is A we force the 
electron to have its next collision after a path length 

s =  -AIn[l -r( l  -exp(-A/A))] (17) 

where r is a random number with 0 G r C 1. To allow for the part of the flux that would 
otherwise be transmitted without a collision the electron is assigned a weight 

W = 1 - exp(-A/I). (18) 

The mean free path I = (Nu)-' is obtained from the total cross section 

and the number density N of the target atoms. Due to the cylindrical symmetry of the 
scattering geometry one needs only to follow the r-components 2; of the electron 
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trajectories. This component is both parallel to KO and the surface normal of the foil. 
One obtains for successive collisions 

zi+, = Li + s cos y i+ I (19) 
where yi+ is the angle between the trajectory and the z-axis after the ith collision. From 
geometry one finds 

cos y i +  I = cos y,  cos (Y ~- sin y,  sin (Y cos p (20) 
where (Y and p are the polar and azimuthal scattering angles at the ith collision: The 
point withinthe foilwheretheelectronstarts with yo = 0, thepathlengths, theazimuthal 
angleband the polarscatteringangle ewere obtainedfrom randomnumbers. Thelatter 
were calculated from the momentum transfer q which was sampled from (15) by using 
the so-called composition method (Rubinstein 1981, Salvat el a1 1986). 

We have used a version of the MC procedure where each electron experiences a fixed, 
preselected number i,,, of collisions. The probability of undergoing; collisions is Poisson 
distributed which, in our case, means averaged over the foil thickness: 

with x = d,,/A. dell is an effective foil thickness which incorporates the effect of path 
length increase by lateral scattering. We have checked (21) with our MC calculation and 
found verygood agreement ifdeft is identified with the foil thicknessd. Thisdemonstrates 
that, due to the  strong forward peaking of the electron differential cross section, lateral 
scattering is negligible (Kwei 1984). We have chosen i,, = 12. It is easily verified that 
forx = 6.6, which applies to our experiment, P12 Po holds. (Thiscan also be seen from 
the first two moments of distribution (21), which determine the average number of 
collisionswithin thefoil(i} = x / 2  = 3.3andthevarianceo2= (iz) - (Q2 =x/Z +xz/12 = 
6.9.) After the last collision, electrons were sampled according to their transverse 
momentap, = pt, sin y .  This procedure yields the distributiong(p,) of (12). 

The basic assumption for the correction procedure is that angular spreading is 
dominated by incoherent elasticscattering and that the influence of inelasticscattering 
on angular dispersion can be neglected (Reimer 1984, Salvat and Parellada 1984a, b, 
Lencinas ef a1 1990). Roughly, the cross section for the elastic electron-nucleus inter- 
action scales with Z’ whereas the inelastic electron-electron interaction scales only with 
2. It is for this reason that some authors replace Z* by Z(Z f 1) in (15) (see e.g. Brown 
eral(1969) andfurther references therein). In addition,we have disregardedtheslowing 
down of the electrons since the average energy loss in our foils amounts to 0.15 keV only 
(Pages er al 1972) which is small compared with the resolution of our y-detector. The 
production of secondary or cascade electrons is believed to play no essential role at our 
electron energies (Salvat et a1 1986). 

5. Experimental results 

Figures 4 and 5 show the non-coincident (figure 4) and the coincident photon spectrum 
of the 80 nm Cu foil (figure 5 ) .  The spectrum of figure 4 has been obtained after the 
subtraction of a 10% flat background. The original “-dependence was converted 
into a p,-scale using (sa).  For comparison. the solid line in figure 4 represents the 
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Figure 4. The single-photon counts as a function ofp,. The solid curve represents the data 
of Paakkarierd(1975). 
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Figure 5. Coincidence wum as a function ofp,. The raw data (circles) have been corrected 
for multiple scattering (triangles). The curves have been drawn to guide the eye. 

experimental data from Paakkari et a1 (1975) which have been folded with our pz-  
resolution of 0.9 au (FWHM). We remark that our foil is about a factor IO4 thinner than 
targets usually used in conventional Compton scattering work. In figure 5 both the 
experimental raw data (open circles)-the integrated coincidence count rate was about 
7 mHz-and those corrected for multiple scattering (full triangles) are shown. In the 
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Figure 6. The M A W  momentum density of Bross (1982) (solid curve) and convoluted with 
the experimental p,-resolution (broken curve). 
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Figure7. Comparison of the corrected coincidence count rate with the convoluted EMD (solid 
curve). Both have been normalized at the maximum. 

latter case the raw data have been multiplied by the correction factor R(O,p,)  of (14). 
For the evaluation of R one needs the EMD p(p) .  At least two strategies seem to be 
appropriate. As a first-order approximation one could use the experimental data of 
figure 5 (the raw data) or, alternatively, one could start with a simple and rather crude 
theoretical model for p(p) .  In view of the rather large statistical fluctuations of the 
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Figure 8. Comparison of [he corrected coincidence count rate (solid curve) with the single- 
photon couot rate (broken curve). 

experimental data we decided to take the second possibility. For the (4s)' state in Cu we 
used a Seitz approximation with Fourier components of the Bloch waves extracted 
from experimental work (Pattison et a1 1982). The strongly anisotropic EMD has been 
spherically averaged like the similar renormalized free-atom model of Berggren (1972). 
Allotherstateswere treated as atomic-like. The wave functionsforthese states, obtained 
by a Roothaan-Hartree-Fock method. are tabulated by Clementi and Roetti (1974) in 
theformofSlater-typeorbitals, which caneasilybeFouriertransformedinto momentum 
space. 

Finally, we want to compare our data with an EMD obtained from sophisticated 
band structure calculations. Bross (1982) has used the modified augmented plane wave 
method (MAPW) to calculate the spherically averaged EMD in Cu includingeven the ( 3 ~ ) ~  
and ( 3 ~ ) ~  states into the band structure. Figure 6 shows p(p)  as a function of p = p z  
(since pI = 0). The solid curve represents the data of Bross whereas the dotted curve 
was obtained after a convolution with ourp,-resolution. We have checked that the (Is)* 
( 2 ~ ) ~  ( 2 ~ ) ~  core makes no contribution to p(p) which is visible on the scale of figure 6 .  
Therefore, the deepest core level which has been accounted for in the MAPW density is 
the 3s state with a binding energy En of 122.5 eV (Fuggle and Martensson 1980). We 
have mentioned that in ( 9 ~ ) .  terms of the order EB/K0 (= 0.073 aufor the 3s state) have 
been neglected which can now be justified. In figure 7 the convoluted EMD is compared 
with the corrected data of figure 5. In view of the statistical fluctuations the agreement 
is acceptable. In figure 8 we compare the coincident photon spectrum with the non- 
coincident one, normalized to the maximum. It isevident that the former is remarkably 
narrower. This should be the case, since the Compton profile 

J ( P z ) =  J JP(PX,PY>P, )dPXdP,  (22) 

sums over the long-ranging momentum density contributions in the x- and y-directions. 
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The experimental data of figures 4 and 5 allow a crude test of the triple-differential 
cross section for inelastic photon scattering from bound electrons. To our knowledge 
such a test has never been previously performed, although the cross section is one of the 
most fundamental in atomic physics. For large momentum transfer KO %-p the cross 
section can be written (Rollason el a1 1989a) as 

where (. , . ) K N  is the Klein-Nishina cross section for the scattering of a photon at an 
electron at rest (Jauch and Rohrlich 1955). and pi and EL are the EMD and separation 
energy of the single-particle state i. For KO = P A ,  and also in the non-relativistic limit, 
the cross section of (23) becomes identical to that given by Platzman and Tzoar (1965). 
We note that the structure of (23) is the same either for (e, 2e), (y, ey) in atomic and 
solid state physics (Byron and Joachain 1989) or for (e, e'p) and (p, 2p) reactions in 
nuclear physics (Antonov ef a/ 1988, Day 1989). Since from (9b) the differential solid 
angle of the electron detector is 

dQ., = dpr dp,/Ki (24) 

we obtain from (23)-ignoring the binding energies EL and performing the &function 
inlegration-the well-known double-differential cross section (Cooper 1985) 

d2u /do '  dS2, = (du/dRY),,(w/o6K,)J(p,) (25) 

with p2 from (9a). Integration of (23) and (25) over the scattered photon energy w '  
yeilds, due to (9a), 

where (p - ' )  is a moment of the EMD (Epstein 1973, Wong e? al 1975) and from (25) 

dU/dB, = Z(dff/d/dS2,)KN. (27) 

The integrated counts of figure 4 ( N , )  and figure 5 ( N J  are proportional to the cross 
sections of (27) and (26). respectively. Thus, we obtain from the ratio of the total counts 
NCIN, 

( p - ' )  = (2aZ/K; AQe c e ) N C / N y  (28) 

Here, AQe and E, are the solid angle and efficiency of the electron detector. By taking 
the ratio NJN,, trivial factors such as the Klein-Nishina cross section, solid angle and 
efficiency of the y-detector, photon flux density etc have been eliminated. In deriving 
(26) we have assumed that the electron detector is placed atp, = 0. With Z = 29, KO = 
62.1 au, ABc = 0.3 msr, E, = 0.85 and N J N ,  = 0.027 we arrive at (p- ' )  = (5.0 i 1.4) 
au. The error results essentially from estimates of the uncertainties of the electron 
detector solid angle, its efficiency and the total counts N ,  and N, .  The experimental 
value shows fair agreement with the theoretical ( P - ~ )  = 6.32 au which we obtained from 
an integration of the MAPW density p(p) (Bross 1982). 

The evaluation of the differential cross sections for the electron branch follows from 
equation (23) and is similar to that of the photon branch. Since we have, from (lob), 
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Figure 9. The single-differential cross section for 
the electron branch (solid curve) and the photon 
branch(br0kencurve) asa functionoftheelectron 
emission angle q,,. 

0 

dB, = dp, dp,iK+here, dpx and dp, are perpendicular to K~ and differ from those of 
(24)-one obtains equivalently to (25) 

with pi of ( loa) .  Notice, that the Klein-Nishina cross section now refers to the electron 
solid angle dQc. One further integration of (29) yields, together with (IOU), 

du/d/d&, = Z(du/dQ2,),,. (30) 

R (do/dQt)m/(do/dQ,)m = (AQ, &,/AQ, E d N J N , .  (31) 

R = IdQ,/dQ, 1 = 4az cos qo/(cos2 qu + a* sin2 q0)* (32) 

A quantity easily accessible by experiment i s  the ratio of the total single counts N , / N ,  
which determines the cross section ratio: 

From (2) one finds, for this ratio, (Davisson and Evans 1952, Heitler 1954) 

witha = 1 + o. For w = 148 keVand qu = 15 .Soone has R = 5.8. For 80 nm and290 nm 
thin Cu foils we have measured the count ratio N,/N,  = 5.2 and 6.0, respectively. With 
AQ, = 0.4 msr and a y-detector efficiency E, = 0.7 the experimental cross section ratios 
areR,,, = 5.7 2 lforthethinnerfoilandRexp =6.5 2 0.4forthethickerone.Therather 
large error in the former case results from a background subtraction which amounted to 
about 90% of the total electron signal. As an illustration, we show in figure 9 the single- 
differential cross sections for the photon branch (do/dQ,)KN (broken curve) and the 
electron branch (du/dQe),, (full curve). The curves hold for w = 148 keV and a linear 
polarization of the incident photon beam of 90% (i.e. a Stokes parameter P = -0.9 
(Rollason er ul1989b, Smend eta! 1987)). The agreement of the numbers above dem- 
onstrates that, on the one hand we understand the detection efficiency of our system, 
i.e. solid angles AS2 and quantum efficiency E ,  reasonably well and, on the other hand, 
that no electrons are lost or  gained by scattering. We have investigated this point 
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more quantitatively. In analogy to (12) an effective single-differential cross section is 
calculated that is influenced by multiple scattering: 

(dvo)),tt = P04vo) + 2(1 - Po) loX JOE O ( Y k ( P l ) P L  9 1  dY (33) 

with the abbreviation U = (du/dC& and 

where Aa, = p L / K o .  With the multiple-scattering functiong(p,) for the 80 nm CU foil 
we find that the effective cross section is only 4% smaller than the undisturbed o(Q?~). 
This is a rather small difference especially in view of the 40% change in U(%) within 
(Aa,;)'I* = 23' which is approximately the angular width of the g(pJ distribution. 
Inspecting the angular behaviour of u(p0) in figure 9 we see that apparently as many 
electrons are scattered towards p0 = 15.8" from smaller angles as are scattered away 
from qo towards larger angles, thuscompensating to first order the influence of multiple 
scattering. 

6. Conclusions 

The experiment has demonstrated that EMDS can, at least in principle, be extracted from 
a ( y ,  ey) experiment. Although the photon flux density has been increased considerably 
comparedwiththatofourlastexperiment(Bellerall990) andisnow a t2  X 1O'Ophotons 
cm-' s-l , the data that have been accumulated in 33 hours of beam time still suffer 
from rather bad statistics. This can be overcome by several experimental efforts: the 
introduction of two-dimensional detectors, both y- and/or electron detectors, the use 
of an insertion device like a wavelength shifter or an undulator, and the possibility of 
running the storage ring in a multi-bunch mode which would reduce the proportion of 
false coincidences. It might even be legitimate to dream of machines with rather large 
critical energies such as LEP or PETRA. The inevitable use of very thin solid state targets 
does not limit the evaluation of three-dimensional EMDS since monocrystalline metal 
foils are easily produced by epitaxy. 
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